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ABSTRACT
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SIGNIFICANCE AND EXPLANATION

4 Questions of existence of periodic solutions for classical mechanical

systems have a long history. The development of the nonlinear functional

analysis has provided powerful new tools and renewed interest in these

problems. In this paper we considersthe Hamiltonian system

i *

14P

where p,q e an  and V e C2(fn ) and we prove that 1") has at least one

periodic solution of energy h, provided that the set

{q e anIV(q) < h)

is bounded.
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CLOSED GEODESICS FOR THE JACOBI METRIC AND PERIODIC SOLUTIONS
OF PRESCRIBED ENERGY OF NATURAL HAMILTONIAN SYSTEMS

V. Benci*

I- INTRODUCTION AND MAIN RESULTS.

We consider a natural Hamiltonian function H e C2 (R2n ) i.e. function of the form

(1.1) H(p,q) -1/2 1p1 2 + V(q) p,q e Rn

and the corresponding system of differential equations

aH aH
(1.2) P--j, T -

where "*" denotes d/dt.

It is well known that the function H itself is an integral of the system (1.2). In

fact it represents the energy of the dynamical system described by (1.2). It is a natural

problem to ask if the equation (1.2) has periodic solutions of a prescribed energy h. The

main result of this paper is the following theorem:

Theorem 1.1. Suppose that

(1.3) e (q 5 rnv(q) < h)

is bounded and not empty. Then the Hamiltonian system (1.2) has at least one periodic

solution of energy h.

Remark I. The assumption (1.3) is necessary. In fact the Hamiltonian

H(p,q) = 1/2 Ip12 + q has no periodic solution.

Remark II. If there is q0 e 32 such that VV(q0 ) - 0, then q - q0  and p E 0 is a

periodic solution of (1.3) of energy h. If we want to have nonconstant periodic solutions

of energy h, we need to add the following assumption

(1.4) V(q) * 0 for every q e 3.

If (1.4) is violated, then it may be that (1.3) has no nonconstant periodic solution as the

following example shows:

H(p,q) =1/2 Ip!2 + q4 - q3  (p,q) e RI h = 0
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Remark III. As it will be clear by the proof, Theorem 1.1 applies also to Hamiltonians of

the form

(1.5) H(p,q) =
1
/211j aij(q)p1pj + Vlq)

where {aij(q) is a positive definite matrix for every q e n. However, since our proof

is based on the variational principle of Monpertius-Jacobi, it cannot be applied to

Hamiltonians whose "kinetic energy" term is not a positive definite quadratic form.

The search of periodic solutions of prescribed energy is a problem which has a long

history. We refer to CR1] and [Br] for recent surveys and we restrict ourselves to

mention only some of the more recent results. Weinstein and Moser [W,M] have studied the

existence of periodic solution near an equilibrium. In this case, under suitable

assumptions, the existence of n periodic orbit can be proved. However, far from an

equilibrium, the existence of n-periodic orbits can be proved only under more

restrictive assumptions on the energy surface H(p,q) - h. Eckland and Lasry (EL]

have proved this fact when such surface if convex and contained in the set

2 2 -AR - {(p,q) I R 4 IpI + Iq 2 - WR21 for some R > 0 (see also Pmbrosetti and Marcini for

another proof [AM]). A result of Berestycki, Leery, Mancini and Ruf [BLME] is the last

results in this direction as far as I knowl it includes both the theorm of Weinstein and

the theorem of Eckland and Leery.

If the existence of at least one periodic orbit is required more general Hamiltonians

are allowed. Seifert, in a pioneering work IS], has proved that the Hamiltonian (1-5) has

at least one periodic solution provided that n is diffeomorphic to a ball. The theorem

of Seifert has been generalized in many ways (cf. ER1]). The last results in this

direction is due to Rabinowitz [R2J. He considers a Hamiltonian of the form

H(p,q) - K(p,q) + V(q)
aK

where ap p > 0 for Ip1 > 0 and Q is diffeomorphic to a ball.

Under these assumptions he has proved the existence of at least one periodic orbit.

The result of Rabinowitz, compared with Theorem 1.1, allows a more general "kinetic energy"

term but still has to impose that A is diffeomorphic to a bell.
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Also in a recent paper Gluck and Ziller [GZ] have proved a theorem similar to Theorem

1.1. Under the assumption of Theorem 1.1, they have proved the existence of a nontrivial

periodic solution (actually of a brake orbit; of. Remark IV for its definition)s (they seen

to have forgotten to explicitly state assumption (1.4) which is necessary as the Remark I

shows). Our proof of Theorem 1.1 is quite different from their proof, it is based on a

different approximation scheme and uses more analytical tools

Our method of proving Theorem 1.1 is based on the least action principle of

Maupertius-jacobi (cf. e.g. [A) page 245 or [G] for Hamiltonians of the form (1-5)) which

leads our problem to a problem of differential geometry which will be explained below.

Let n be an open set in FP with mooth (say C
2
) boundary and let a e C2 (5,R )

be a nonnegative function. we consider the metric

(1.6) dP - -'s(x) do x e

where do = /)t (dxi)
2  

is the Euclidean metric. If a(x) - h - V(x), (h e R) the

metric (1.6) is the "Jacobi metric" associated to the Ramiltonian (1.1). The Maupertius-

Jacobi principle states that the closed geodesics of the "Jacobi metric" are the periodic

orbit of (1.1) of energy h.

To be more precise we give the following definition

Definition 1.2. A continuous function Y : S' 5 (S
1 - [0,1]/{0,10) is a closed

geodesic with respect to the metric (1.6) if it satisfies the following assumptions:

(i) y(t) e 0 except may be for t - 0 and t -1/2

2(19 -1

(ii) y e C 2(i,) where I - Y (a)

(iII) L- [a(Y)II - 1/2 IjI2Va( for every t e i.

Remark IV. The closed geodesic as defined by the above definition are of two different

types

(1.7) interior geodesics: Y(S
I
) 3D -

(1.8) brake geodesics: Y(S 
1
) an - {0, 1/2}

The interior geodesics are just smooth curves contained in 9, while the brake geodesics

satisfy the relation

(1.9) Y(t) - yO1 - t)
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(1.9) is an easy consequence of the Maupertiue-Jacobi principle (cf. Remark V). The

precise statement of the Maupertius-Jacobi principle is the following

Theorem 1.3. Suppose that

(1.10) a(x) - h - V(x)

and that (1.4) is satisfied. Then to every closed geodesic, by a suitable

reparametrization of the independent variable (time), corresponds a periodic solution of

(1.1) of energy h.

Proof. For the convenience of the reader we shall give the proof of he Manpertius-Jacobi

principle. Let I be a closed geodesic and let 10 denote S
1  

if y is an interior

geodesic or (0,1/2) if Y is a brake geodesic. As we can check easily 
1
/2 a(Y) 11

2  
is

an integral of equation (iii). Then

(1.11) 
1
/2a(Y)trI -j for every t e i0

where X > 0 is the integration constant. By (1.10) and (1.11) and equation (iii) we get

d(1.12) a [a(y)#] = -Vv(y) for t 8 (0,1)

Now we define the following function

(1.13) s(t) - I a~yt)) dt t e 10

If y(t) is an interior geodesic a(Y(t)) is a bounded function. If y(t) is a brake

geodesic we have to prove that the integral (1.13) converges.

By (1.11) we get the following inequality

da(y(t)) a() a(y)5/2

Since we have supposed V e C
2(5), IVa(x)I is bounded for x e 5, so we have

S 15/2 
te 

((1 5/2it a(Y(t)) ,y t (0, 1/2)

where M1  is a suitable constant.

-4-



The above inequalty and standard estimates for ordinary differential equations give

the following inequality near t - 0 and t - 1/2

2 with to - 0 or 1/2 and M I  in a suitable constant.&(Y(t)) (t - to
2/ 3

Thus in every case the function (1.13) in well defined for t 10 . Since it is a

continuous increasing function it is invertiblel t(s) will denote its inverse.

We now set

(1.14) q(s) - Y(t(s))

By (1.12) we have

(1.15) 1/2 aY) for t e s(b O )
ds

Then

qd s - I - -
1 2. ~ ~ l 2  ay~ t -1 dd 2 do IId dt "/ o-- dt

ds 2

Replacing the above inequality in (1.12) we get

(1.16) 22q(s) - -Vv(q)
do

The above inequality holds for every a e tlio). If 10 - (0, 1/2) arguing in the same way

we can prove (1.16) for ( 1/2, 1). Thus (1.16) holds for every s e t(S1 ). Moreover by

(1.11), (1.15) and (1.10) we get

I/2 (d 2 2d X s( ) 2

(1.17) 2(j + v(q) -2I1I(-..) + V(q) " a( TY (-1/ 2 2 + h - a(Y) - h

Finally setting p(s) - &i(@) we obtain a periodic solution (q(s),p(s)) of (1.1) of
do

energy h.

Remark V. By the proof of theorem we see that a brake geodesic generates a solution of

(1.16) such that q(s(0)) - Y(O) and q(s( 1/2)) - Y( 1/2 ). Moreover, by the uniqueness of
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the solution of equation (1.16) it follows that q(s( 1/2) - - q(s( 1/2 ) + so ) for

s o e (0,s( 1/2 )). Therefore the brake geodesic satisfy (1.9). Also we have the following

formula for the period of q(s):

0 a(Y(T))

The problem with the metric (1.6) is that it degenerates for x e an so that the standard

techniques of the Riemannian geometry cannot be applied without many troubles

The main purpose of the next section is to prove the following theorem

Theorem 1.4. Let n be an open bounded set in R
n  

with boundary of class C2 
and let

a e C215) be a nonnegative function. Then if

(1.18) a(x) = 0 if and only if x e an

(1.19) Va(x) * 0 for x e 30

there exists at least one closed geodesic for the metric (1.6).

Clearly Theorem 1.1 is an immediate consequence of Theorems 1.3 and 1.4



2. PROOF Or THBOREM 1.4

The geodesics are the critical points of the 'length" functional

(2.1) J(Y) - f a(Y)Itj2dt Y e C2 (81 AS) where S- C0,11/{0,1)

However, since six) degenerates for x + an, it is difficult to study directly the

functional (2.1) and an approximation scheme seems to make life easier.

Let x e C700 be a function such that

X(t) - 0 for 0 4 t 4 1

x(t) - 2 for t 2

XI(t) ), 0

and for every 6 > 0 we set

(2.2) U (x) - X(--)
£ a Cx) a(x)

and

(2.3) J(Y) =Jf 2 a(y)1112 _- O(Y)jdt y e c 2(is1 , A)

Clearly for every y e c 2 is 1f). 3 (Y) + .7(Y) for c 0. The critical points of j

satisfy the eq~uation dj, (y)SY1 - 0 i.e.

18f(y pte . S + 1/2 (V&~y (Y 65y i
(2.4)

[+ +c)) 2 X avX- . L]Va~Y 8 yjdt -0
C a( e) a(y )

which gives the Ruler-Lagrange equation for the functional (2.3)

(2.5) L (a(Y)Yf] - 1/2 If I2Va('r) - VU (Y)
dt e

of course equation (2.5) are an approximation of the geodesic equation (iii) of Definition

1.2. However equation (2.5) is easier to deal with. In fact we have the following result.

Theorem 2.1. For every c e (0.% ) where £0 is small enough) there exists a function_

y e C 2 ( 1 ,FP) solution of (2.5). Moreover Y can be chosen in such a way that the

following estimate holds

a

where a and 0 are constants which dEpend only on 0 (and not on e).
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The proof of the above theorem is contained in [B], Theorem 1.1.

Our aim is to prove that fy dE>O has a subsequence converging to a closed geodesic

for our Jacobi metric. To carry out this program some estimates are necessary. We set

{ Se - J E(Y 
1
/ 2 a(Yd It 12 - UC(YC)}dt

L . J1/2a(y )It 12dt

The interpretation of S and LE are obvious: LC is the square of the length of the

curve Y. in the Jacobi metricl SC can be regarded as the action functional of the

trajectory Y. with respect to the Lagrangian function

L (x,E) 1 I/2 a(x)IE12 - U C(x) (x e n, C e Ta). Notice that LC(x,E) is not the

Lagrangian function associated with the Hamiltonian (1.1).

Lemmta 2.2. There exists a sequence 
t
k + 0 and a constant L0 > 0 such that

() e+ L. for k + +4

(M L +L 0 for k + 4

Proof. By Theorem 2.1 we have

a 4S C 4

Then (a) follows straightforward.

By (1.18) and (1.19), for every K > 0 there exists C > 0 such that

,Va(x) 12 > 1
a(x) 2  

) M - ) for every x such that a(x) < C/2

By the above inequality we get

(2.6) x(. -c Iva(x) "MU x)
a(x) a(x)2 x) a) W

So we can select sequences Ck + 0 and Mk + +0 such that

S C +L0

(2.7) 1 a x
L O

2_2

1 (x) L !-X(- ---) a(x) 1 for every x efnC 1 K ka(x) 2

-8-



By the equation (2.4) with 6y(t) = Va(Y C (t)) we get

J {a(y )d2 (Y )[ C2 +1/2 lie1 1Va(-Y )I

(2.8) Va(y)1
2  

C vacy )12

+ + I(-) % C ldt - 0
a(Y) Y )2 ( ) YC)3

where d
2
a(x)[&

2
] denotes the second differential of a(-). Since the second and the

fourth term in the above integral are nonnegative, we get the following inequality

17a(y C ) 12

(2.9) J x(j--- k) a dt ( - J a(-Y)d 2a(y )[1 2dt ( Id2al J a(Y )l1 2dt
MY C~ 2 C C £

where we have set

Id 2al - max'd 2a(x)W 12 2x en, e TQ, I, 1)

So we have

L£ -1/2 J a(y )IIC j
2
dt = S C + I U C (Y C)dt =

Ik ]a(Yek )I2
's +a a( X () 2 ) dt [by (2.7)1

S C + -a--Id
2
aj 1 a(Y C )Ii 1

2
dt [by (2.9))

+ d
2
al L

L k Mk- 'k

Thus by the above formula and thedefinition of S and L we get

(I -f ! L <a S k L
%-- Lk 'k L k

Thus, since Kk + 4 and S C L0  for k + , the second assertion of the lemma

follows.

I| II -I I .. .. ... I " .. .. . . . - . .. .. . .. . . . . .. -. ..-.



Corollary 2.3. If we set

12

Be f 1/2a(Y )Iji 2 + U e(Y C)dt
0

we have

(a) 1/2a(YC(t))1t (t) 12 + U (YE(t)) - e for every t e (0,11

(h) Ek + L0  for k + .

Proof. (a) by direct computation, it is easy tones that the left hand side of equation

(a) is an integral of equation (2.5). More exactly if J is interpreted as the Hamilton

functional for the Lagrangian L C(x,E), then E can be interpreted as the energy.

(b) follows by the fact that we have the identity

BE - 2LC - Se

and by learns 2.2. U

Now let HI (S I denote the Sobolev apace obtained as the closure of C (SI,Rn ) with

respect to the norm

11 1 [I 1 12 + IY12dt 1/2
H 0

Lemma 2.4 There eixsts a sequence Ek + 0 and y e H (S such that

Y e + y weakly in H (S1 )

Proof. Consider the equality (2.8). Since the third and the fourth terms are nonnegative,

we get

(2.10) 1/]Il ()12 dt <-]a(Y )d 2a(Y )[j ] 4- Id 2, &1 a (Y ) 12 dt
11 JI e Jv~yCC £ £

By (1.18), (1.19) and the compactness of 5, there eixsts constants v, M > 0 such that

(2.11) Ma(x + IVa(X)I 2 > v for every x e Rl

By Corollary 2.3(b), we have that

(2.12) 1/2f a(Y )It E 12 4 Lo + 1 for k large enough

So by the above formula and (2.10) we get

1/2I 1Va(Yek 12 1 Ck 2 < (2L0 + 2)Id
2 a& for k large

-10-



Adding the above formula with M times (2.12) we get

1/21 {M(Y k) + IV&(Va )f2 fl 2 < C with C (2L 2)idal + (L0 + 1)M

Now, using (2.11) and the above formula we get

I I t t 12 < c2

The above inequality, and the fact that n is bounded imply that yk IH1 Ii

bounded. Then the conclusion follows, may be taking a new subsequence of ek' .

Finally we can prove Theorem 1.4.

Proof of Theorem 1.4. By lema 2.4 we have that

(2.13) YE 
+ Y  

weakly in H
1
(S

1
) and uniformly.

We want to prove that there exists t o e 81 and d > 0

(2.14) dist(YE (t0 ),;In) ) d > 0 for every k.

We argue indirectly and suppose that for every t e SI there exists a sequence dk 0

such that

dist(y kt),3) 4 dk

Then we have

L J 1/2a(YC M C 12dt - maxla(x)jdist(x,3n) < dk) • lye 1  .

Thus by lma 2.4 and (1.18), Lk 0. But this fact contradicts lemma 2.2. So (2.14)

holds. Therefore the set {tY(t) e 0) is not empty. Let A be one of its connected

components.

pow let * e CA,Rn )  
(i.e. a smooth function with support contained in A). By

equation (2.4) with SY - we get

-11-



(2.15)f a(Y )IC 4 +/2 Il 1(Va(y C ) - {VU C(Y (Y CJIdt 0 0
& k kc kc kc k k k

Since Yk y Y uniformly then

a(Yk) + a(Y)

(2.16) uniformly.1 (2.6) [
V l~k )  

Va(Yk

Moreover by (2.2)

(2.17) VU C k(t)) - 0 for k large enough and t e supp *

Now (2.13), (2.16) and (2.17) allow us to take the limit in (2.15) and we get

f &(y)4 +1/2 jf 2 (Va(y),*)dt f for every * e C7(A,0 )

Therefore y satisfy equation (iii) of Definition 1.2 for every t e A. Thus if A S

we have obtained an interior geodesic and we are finished. If & * S
1
, we consider the

affine transformation

A • (0, 1/2

Since equation (iii) is invariant for affine transformation, the the function

Y(t) = (t)) if t e (0, 1/2

y(TI (1 - t)) if t e (1/2 ,1)

provides a brake geodesic according to Definition 1.2.

-12-
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